A design protocol for tailoring ice-templated scaffold structure.

نویسندگان

  • K M Pawelec
  • A Husmann
  • S M Best
  • R E Cameron
چکیده

In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Toolkit for Tailoring Ice-Templated Scaffold Structure

In this paper we prove for the first time the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze drying of collagen slurries is an industry standard, and until now,...

متن کامل

Ice-Templated Structures for Biomedical Tissue Repair: from Physics to Final Scaffolds

Ice-templating techniques, including freeze-drying and freeze casting, are extremely versatile and can be used with a variety of materials systems. The process relies on the freezing of a water based solution. During freezing, ice nucleates within the solution and concentrates the solute in the regions between the growing crystals. Once the ice is removed via sublimation, the solute remains in ...

متن کامل

Ionic solutes impact collagen scaffold bioactivity

The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with incr...

متن کامل

Numerical Study on Parameters Affecting the Structure of Scaffolds Prepared by Freeze-Drying Method

Freeze-drying is one of the most used methods for preparing scaffolds and is very sensitive to the material and operational parameters such as nucleation temperature, thermal properties of the mold, cooling rate, set freezing point, and slurry height. In the present study, a Finite Element Method (FEM) based code was developed to investigate the effects of such parameters and to eventually ...

متن کامل

Altering crystal growth and annealing in ice-templated scaffolds

The potential applications of ice-templating porous materials are constantly expanding, especially as scaffolds for tissue engineering. Ice-templating, a process utilizing ice nucleation and growth within an aqueous solution, consists of a cooling stage (before ice nucleation) and a freezing stage (during ice formation). While heat release during cooling can change scaffold isotropy, the freezi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 92  شماره 

صفحات  -

تاریخ انتشار 2014